propositional calculus - definizione. Che cos'è propositional calculus
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è propositional calculus - definizione

BRANCH OF LOGIC CONCERNED WITH THE STUDY OF PROPOSITIONS (WHETHER THEY ARE TRUE OR FALSE) THAT ARE FORMED BY OTHER PROPOSITIONS WITH THE USE OF LOGICAL CONNECTIVES, AND HOW THEIR VALUE DEPENDS ON THE TRUTH VALUE OF THEIR COMPONENTS
Sentential logic; Sentential calculus; Propositional logic; Sentence logic; Sentance logic; Propositional Calculus; Truth-functional propositional logic; Propositional calculi; Truth-functional propositional calculus; Classical propositional logic; Exportation in logic; Solvers for propositional logic formulas; History of propositional calculus; Truth functional propositional calculus; Truth functional propositional logic

propositional calculus         
Propositional calculus         
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic.
propositional logic         
<logic> (or "propositional calculus") A system of {symbolic logic} using symbols to stand for whole propositions and logical connectives. Propositional logic only considers whether a proposition is true or false. In contrast to predicate logic, it does not consider the internal structure of propositions. (2002-05-21)

Wikipedia

Propositional calculus

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logic is the foundation of first-order logic and higher-order logic.